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Since Arduengo’s seminal isolation of 1,3-diadamantyl-imida- yield by deprotonatindg with sodium hydride (facilitated by adding
zolylidene! N-heterocyclic carben@¢$NHCs) have found extraord-  a catalytic amount of potassiutart-butoxide). NHC2 exhibited a
inary utility for modulating the activities of transition metaind as signal at 232 ppm in thé&’C NMR spectrum (€Dg), which was
versatile catalysts for promoting organic reactiérwe have re- similar to known benzimidazolylidenes and other annulated car-
cently launched a program that utilizes NHCs as building blocks for benes. Combined with théH NMR data forl, this result highlights
organometallic polymers, with an emphasis on tuning the electronic the subtleties in using NMR spectroscopy to isolate from
interactions between NHCs and their ligated transition métals.  z-effects in NHCs. To confirm the molecular structure2pé crystal

The complexation of NHCs to transition metals is strongly was obtained by slowly cooling a hot, saturated toluene solution
governed byo-donation from the carbene to the metal center. and analyzed using X-ray diffraction analysis. The molecular
m-Backbonding from the metal to the p-orbital of the carbene has structure of2 revealed a planar ring system, relatively long®
historically been considered to be negligible owing to competing bond lengths (1.392(8) A), and a narrow-K—N bond angle
m-overlap of the electron-rich N atoms adjacent to the carBéne. (102.T),°¢which suggested that thesystem of the quinone moiety
However, recent theoretical analyses and synthetic advances havavas effectively conjugated to the carbene.
challenged_this view. By corroborating computational models with o, ;. Synthesis of an NHC Annulated to a Quinone and its
key bond distances and angles observed in select ranges ofmetal Rh Complexes
NHC X-ray crystal structures, Light, Meyer, Frenking, and Jacobsen Mes o = o
concluded thatr-backbonding contributes up to 30% of the overall cl N Ne,30, NMes NaH, KOtBu (cat)
bonding charactet However, Heinick& demonstrated that metal O‘ Y O‘I Op—H ———————

; ; cl HN CHiCN, 110°C N Toluene
complexes formed with carbo- and heterocyclic annulated NHCs Mes 740, & Mes 239
did not adhere to these models. As a result, the nature of the-NHC ? 1 ?
metal interaction, including the existencemebackbonding, remains

controversial® ? r'iwes —— 2 "l“es
The descrepancies between the aforementioned studies can be N); Tﬂ N‘-)—Rh(Lz)CI

traced to challenges associated with separatirgndzz-contribu- Mes Mes
tions in NHC—metal complexes. An NHC featuring a functional o o
group in conjugation with the carbene atom and sensitive to 2 CO (1 atm) 3 (L= cod, 85%)
m-effects would be ideal for identifyingr-backbonding in its CH,Cl, 4 (L, =2CO, 93%)
respective metal complexes. We envisioned this could be ac-

complished by fusing ®@-quinone moiety to the 4,5-positions of Table 1. Summary of Selected Physical Data for Compounds 1-5

an imidazolylidene. With two carbonyl groups formally conjugated compd C (ppm)* N-C (R)° C=0 (cm™Y) Erea (V)"
to the p-orbital at the carbene atom, a quinone-annulated NHC was 1 142 1.336(2) 1685 (1690) —0.24
anticipated t(_) offer three distinct advaptages for s_tudying met_a_l g 58(2) i:g%% %g;(l)e%lms) 30_55
NHC interactions: (1) Carbonyl stretching frequencies are sensitive 4 191 e 1680 (1680) —0.49
to minute electronic changes nsystems and can be conveniently 5 193 1.352(4) 1681 (1683)  —0.49
measured using IR spectroscogy2) The electron-withdrawing aChemical shift of the carbene atom found in its respecti@NMR

nature of the quinone should result in increased propensities for S_F:eCtrum t(@e)l-:bgifﬁanget bet\f/;/eetn twelcafbe_r;g gtOFS flhnd ﬁdj?ining
_ . . . P . nitrogen atom. Fok, the aata refiects the longer ond; the shorter

7 bggkbondlng upon I'g.at'on toa trans't'or‘.maal' 3puinones _ N—C bond= 1.385(8) A. All other compounds showed symmetrie-®l

exhibit reduction potentials that are sensitive to subtle electronic bond lengths¢ Carbonyl stretching frequencies were determined using IR

changes on their peripherigsCollectively, this enables the use of ~ spectroscopy for compounds in the solid-state (KBr); parenthetical values

. were determined for compounds in solution (Cg)CValues aret1 cn ™.
IR spectroscopy and cyclic voltammetry to observe structural and First reduction potentials as determined using cyclic voltammetry in

electronic changes, including deconvoluting versusz-effects, CHsCN, 1 mM analyte, 0.1 M (BiN)(PF) as electrolyte, referenced to
on the NHC ligandupon complexation. Herein, we report the syn-  Fc™/Fc (1 mM) at 507 mV vs Ag/AgCI/KCI (saturated) electrode; scan

thesis of the first NHC annulated to a quinone and present evidence @€ = 0-2 V 5. Values aret0.01 V. Not evaluated.
for w-backbonding in its respective transition-metal complexes. After isolation and characterization &fits utility in the synthesis
Imidazolium saltl was synthesized in 74% isolated yield by of organometallic complexes was investigated. With the goal of
reacting commercially available 2,3-dichloro-1,4-naphthoquinone evaluatingr-backbonding characteristics in mind, a metal complex
with N,N'-dimesitylformamidine under mildly basic conditions was needed with ancillary ligands that were exchangeable without
(Scheme 132 A signal assigned to the iminium proton was found disrupting other physical characteristics of the complex (oxidation
at 12.8 ppm in théH NMR spectrum (CDG). To the best of our state, geometry, coordination number, etc.) In particular, we desired
knowledge, this is the largest downfield shift reported for any known a system where a ligand with relatively little-backbonding
imidazolium compound and reflects the highly electron-withdrawing capability (e.g., an olefin) could be substituted with a ligand that
nature of the quinone moiety. Free carb@ngas obtained in 73% is highly capable (e.g., carbon monoxide). Ancillary ligand exchange
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should result in detectable changes in the carbonyl stretching
frequencies and reduction potentials2ofThus, Rh complexes of
the general type (NHC)RhCI(cod) (cedcis,cis-1,5-cyclooctadiene)

1.356 to 1.397 A which effectively covers all the respective

distances shown in Table 1.

In summary, we have shown that an imidazolylidene annulated to

were targeted as the cod ligand is known to rapidly exchange with a quinone can be readily synthesized from formamidines and 2,3-
two units of carbon monoxide, with essentially no other change in dichloro-1,4-naphthoquinone. The quinone moiety was found to be

the metal environmenit.
Addition of [(cod)RhCI} to a THF solution of2 at ambient
temperature resulted in the formation of Rh com@Beas a brown

a unique and sensitive handle for analyzingsthgystems of NHC

metal complexes using FT-IR spectroscopy and cyclic voltammetry.
Ultimately, unambiguous and non-negligibtebackbonding was

solid, which was subsequently isolated in 85% yield. Bubbling experimentally observed in the NHC complexes reported herein.

carbon monoxide through a GEl, solution of3 for 2 h afforded

4 as a green solid in 93% yield after the evaporation of the sokent.
While the structure of3 was confirmed by X-ray diffraction
analysis, the crystallization ¢f was frustrated by a competitive
dimerization process where loss of carbon monoxide was concomi-
tant with crystallization of [2)(CO)RhCI}.
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Figure 1. Dominant resonance contributors for comple8esnd 4.
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